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Main Contribution
1. A unified approach to adversarial attacks and training based on sensitivity analysis for Wasserstein

DRO from Bartl et al. (2021).

2. A fast-to-compute first order adversarial attack method for distributional threat models. As a special
case, this recovers the classical FGSM attack, lending it further theoretical underpinning.

3. Asymptotically certified bounds and out-of-sample performance of adversarial accuracy, applicable to
a general threat, including classical pointwise perturbations.

Adversarial Attack of NNs
Deep neural networks have achieved a great success
in image recognition tasks. However, they are no-
toriously known to be vulnerable under adversarial
attacks, which are small perturbations of the input
data that lead to misclassification.
To generate adversarial images, we reverse the train-
ing process by maximizing the loss over input data:

EP

[
sup

∥x−x′∥∞≤δ

Jθ(x
′, y)

]
⇝ x∗

≈ x+ δsgn(∇xJθ(x, y)),

where Jθ(x, y) = L(fθ(x), y), and P is the input
distribution.

A demonstration of Fast Gradient Sign Method (FGSM).

Wasserstein DRO Sensitivity

We write V (δ) = supQ:Wp(P,Q)≤δ EQ

[
Jθ(x, y)

]
and

assume Jθ is Lipschitz under d.
The following result follows readily from Bartl et al.
and its proof.

• V (δ) = V (0) + δΥ+ o(δ), where

Υ =
(
EP ∥∇xJθ(x, y)∥q∗

)1/q

.

• V (δ) = EQδ
[Jθ(x, y)] + o(δ), where Qδ is the

pushforward of P under the map

x 7→ x+ δh(∇xJθ(x, y))∥Υ−1∇xJθ(x, y)∥q−1
∗ ,

and h is uniquely determined by ⟨h(x), x⟩ =
∥x∥∗.
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Performance of the first order approximation for the W-DRO
value on CIFAR-10.

Distributional Threat Models
Let d((x, y), (x′, y′)) = ∥x− x′∥s +∞1{y ̸= y′} and
Wp be the Wasserstein distance given by

Wp(P,Q) = inf
{
E
[
d(X,Y )p

]1/p
: X ∼ P, Y ∼ Q

}
.

We propose a novel distributional threat model

sup
Q:Wp(P,Q)≤δ

EQ[Jθ(x, y)].

In distributional threat models, the attacker has a
greater flexibility and can perturb images close to
the decision boundary only slightly while spending
more of the attack budget on images farther away
from the boundary.
The classical pointwise threat model can be covered
as an extreme case p = s = ∞

EP

[
sup

∥x−x′∥∞≤δ

Jθ(x
′, y)

]
= sup

Q:W∞(P,Q)≤δ

EQ[Jθ(x, y)].

Wasserstein Distributional Adversarial Attacks

Our proposed PGD-type attack is:

xn+1 = pj
(
xn+αh(∇xJθ(x

n, y))∥Υ−1∇xJθ(x
n, y)∥q−1

∗
)
,

where α is the step size and pj is a projection.
The classical FGSM attack is retrieved by taking
p = s = ∞.

30% 40% 50% 60% 70% 80% 90% 100%

Adversarial Accuracy (W∞, l∞)

30%

40%

50%

60%

70%

80%

90%

100%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l
∞

)

δ = 2/255

δ = 4/255

δ = 8/255

y = x

50% 60% 70% 80% 90% 100%

Adversarial Accuracy (W∞, l2)

50%

60%

70%

80%

90%

100%

A
d

ve
rs

ar
ia

l
A

cc
u

ra
cy

(W
2
,l

2
)

δ = 1/8

δ = 1/4

δ = 1/2

y = x

Shortfall of WD-adversarial accuracy on CIFAR-10.
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Histogram of distributional attacking strength on CIFAR-10.

Certified Adversarial Accuracy Bounds

• S the set of images equipped with their labels
generated by fθ, i.e.,

S =
{
(x, y) : arg max

1≤i≤m
fθ(x)i = {y}

}
.

• A the clean accuracy given by A = EP [1S ].

• Aδ the adversarial accuracy given by Aδ =
infQ:Wp(P,Q)≤δ EQδ

[1S ].

• Wδ the loss condition on the misclassified im-
age, given by

W (δ) = sup
Q∈Bδ(P )

EQ[Jθ(x, y)|Sc].

We propose a metric of robustness: Rδ = Aδ/A.

• Upper bound: Rδ ≤ Ru
δ := Qδ(S)/A.

• An asymptotic lower bound:

Rδ ≥ W (0)− V (δ)

W (0)− V (0)
+ o(δ)

= R̃l
δ + o(δ) = Rl

δ + o(δ),

where we utilize the first order approximations

of V (δ) and write R̃l
δ =

W (0)−EQδ
[Jθ(x,y)]

W (0)−V (0) and

Rl

δ = W (0)−V (0)−δΥ
W (0)−V (0) .
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